Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

author

  • M. Sattari Faculty of Basic Sciences‎, ‎Department of Mathematics‎, ‎University of Zabol‎, ‎Zabol‎, ‎Iran.
Abstract:

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Sharper Inequalities for Numerical Radius for Hilbert Space Operator

We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...

full text

Numerical Radius Norms on Operator Spaces

Abstract. We introduce a numerical radius operator space (X,Wn). The conditions to be a numerical radius operator space are weaker than the Ruan’s axiom for an operator space (X,On). Let w(·) be the numerical radius norm on B(H). It is shown that if X admits a norm Wn(·) on the matrix space Mn(X) which satisfies the conditions, then there is a complete isometry, in the sense of the norms Wn(·) ...

full text

A note on inequalities for Tsallis relative operator entropy

‎In this short note‎, ‎we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy‎, ‎{em Math‎. ‎Inequal‎. ‎Appl.}‎ ‎{18} (2015)‎, ‎no‎. ‎2‎, ‎401--406]‎. ‎Meanwhile‎, ‎we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...

full text

On the Numerical Radius of a Quaternionic Normal Operator

We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternio...

full text

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

full text

a note on inequalities for tsallis relative operator entropy

‎in this short note‎, ‎we present some inequalities for relative operator entropy which are generalizations of some results obtained by zou [operator inequalities associated with tsallis relative operator entropy‎, ‎{em math‎. ‎inequal‎. ‎appl.}‎ ‎{18} (2015)‎, ‎no‎. ‎2‎, ‎401--406]‎. ‎meanwhile‎, ‎we also show some new lower and upper bounds for relative operator entropy and tsallis relative o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 5

pages  1281- 1285

publication date 2017-10-31

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023